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a b s t r a c t

The recently developed pellicular packing materials show high efficiency and have attracted great inter-
est. The improved mass-transfer kinetics of the core–shell particles is due to the shorter diffusion path
of the molecules within the stationarity phase. In this study we show how the diffusion time of the
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molecules visiting the stationary phase depends on the geometry of the porous shell stationary phase.
The mean escape time of diffusion is calculated on the basis of a random walk model.

1

r
m
m

t
a
t
o
p

s
i
p
t
t
t
s

m
o
o
e
T
p

p
f

0
d

iffusion
andom walk

. Introduction

The recent introduction of novel core–shell packing mate-
ials has evoked a renewed interest in the comparison of the
ass-transfer properties of fully porous and porous layer packing
aterials.
The outstanding separation performance of the shell-type par-

icles has been demonstrated in a large number of experimental
nd theoretical studies [1–5]. The results of all those studies agree
hat the number of theoretical plates one can achieve using 2.7-�m
r 2.6-�m shell particles is equivalent to that of sub-2-�m fully
orous particles.

The real advantage of the shell-type particles is observed for the
eparation of large molecules, during the separation of which the
ntraparticle diffusion is the dominating contribution to the total
late height [2,6,7]. Horváth et al. investigated the influence of the
hickness of the porous shell on the peak resolution and determined
hat the maximum increase of resolution can be achieved when
he porous shell is so thin that the loadability of the column may
eriously be affected [7].

In the present study, we will introduce a method to calculate the
ean diffusion time within porous and shell-type stationary phases

f various porous shell thickness. A one-dimensional random walk
f a single molecule is considered to build the model, which is then
xtended to spherical particles and cylindrical monolith structures.
his concept confirms the advantage of shell particles with thin

orous shells.

Intraparticle diffusion and other details of the chromatographic
rocess, such as mobile phase axial dispersion, external mass trans-
er, and the kinetics of adsorption–desorption process are usually
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described with the plate height equation derived from the gen-
eral rate model of chromatography [8–11]. The moments calculated
from the general rate model allow the derivation of a detailed plate
height equation for both particulate and monolithic columns [12]
as well as for core–shell particles [2].

The microscopic – statistical, or stochastic – concepts that are
employed in this study envision the chromatographic processes at
a molecular level via the random migration of the molecules.

There have been a number of attempts to compare the micro-
scopic and the macroscopic models of chromatography. The
simplest approach is to compare the first and the second moments
of the band profiles [13], but it has been demonstrated that not
only the first and the second moments but also the whole peak
shape obtained with the stochastic–dispersive and with the lumped
kinetic models are identical [14].

2. Theory

We assume that on a one-dimensional grid a particle steps at dis-
crete times with constant-length steps. Then we calculate the mean
time the molecule has to randomly wander to a given position.
Afterwards, the one-dimensional model is extended to spherical
or cylindrical geometries. The problem we want to answer is the
following: when a molecule is found at a random position in the
stationary phase, how long does it take to escape by diffusion to
the interstitial zone of the column?

2.1. Mean time to escape in one dimension
First we start with a one-dimensional diffusion problem [15].
We release a molecule at position x at time t = 0. The randomly
diffusing molecule jumps to the left or to the right a distance ı every
�0 second. Therefore, at time t = �0, the molecule will be either at
position x − ı or x + ı with equal probabilities of 1/2. The mean time
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o escape from those positions are t̂(x − ı) or t̂(x + ı), respectively.
he average for t̂(x) is

(x) = �0 + 1
2

[t̂(x + ı) + t̂(x − ı)] (1)

The above equation can simply be rearranged into

1
ı

[t̂(x + ı) − t̂(x)] − 1
ı

[t̂(x) − t̂(x − ı)] + 2�0

ı
= 0 (2)

When ı is very small, we can write differentials instead of the
ifferences in the above equation and obtain:

dt̂

dx

∣∣∣∣
x

− dt̂

dx

∣∣∣∣
x−ı

+ 2�0

ı
= 0 (3)

When we divide the above equation by ı, exploit that the dif-
usion coefficient is D = ı2/2�0, and once again we assume that ı
s very small so that differentials can be written instead of the
ifferences, we obtain the following differential equation:

d2 t̂

dx2
+ 1

D
= 0 (4)

This differential equation should be solved with the proper
oundary conditions in order to calculate the mean time a molecule
eeds to wander before it arrives to a determined position. In the

ollowings, this differential equation will be considered in various
hree-dimensional environments, and in this manner we will cal-
ulate the average time a diffusion takes before the molecule leaves
he porous particle.

In a two- or three-dimensional system, the diffusion coeffi-
ient can be defined by the Einstein–Smoluchowski equation as
= ı2/4�0 and D = ı2/6�0, respectively. Therefore, the differential

quation for the diffusion time in two or three dimensions is

2 t̂ + 1
D

= 0 (5)

here O2 is the two- or three-dimensional Laplacian.

. Results and discussion

.1. Diffusion time in porous and in shell-type particles

For three-dimensional diffusion and for spherical particles, Eq.
5) can be written as

1
r2

d

dr

(
r2 dt̂

dr

)
+ 1

Dp
= 0 (6)

For a porous particle of radius rp, we can write the following
oundary conditions. When a molecule is at the surface of the par-
icle, at r = rp, the mean time to escape is zero. Furthermore, the

ean time to escape has a maximum at the center of the parti-
le and at r = 0 we have dt̂/dr = 0. Thus, Eq. (6) is solved with the
ollowing boundary conditions

(r = rp) = 0 and
dt̂

dr

∣∣∣∣
r=0

= 0 (7)

The solution gives the mean time to escape from position r in a
orous particle

(r) = r2
p − r2

6Dp
(8)

When molecules are uniformly distributed within the spherical

article, the average value of the mean time to escape is obtained
s

=
∫ rp

0
4�r2 t̂(r)dr∫ rp

0
4�r2dr

= r2
p

15Dp
(9)
ri/rp

Fig. 1. Relative diffusion time against the ratio of the solid core and the total particle
size.

This diffusion time is the reciprocal of the intraparticle rate con-
stant term of the plate height equation calculated from the general
rate model. Thus a direct connection is made between the general
rate model and the microscopic random walk model.

When the particle is not fully porous but the center of the par-
ticle is composed of a fluidimpervious solid core of radius ri, the
boundary conditions will change to

t̂(r = rp) = 0 and
dt̂

dr

∣∣∣∣
r=ri

= 0 (10)

Eq. (6) is solved with these boundary conditions and the mean
time to escape from position r in a core–shell particle is obtained
as

t̂(r) = (rp − r) (r2 + rpr − 2q3r2
p )

6Dpr
(11)

where q = ri/rp is the relative size of the solid core. When molecules
are uniformly distributed within the core–shell particle, the aver-
age value of the mean time to escape is obtained as

� =
∫ rp

ri
4�r2 t̂(r)dr∫ rp

ri
4�r2dr

= r2
p

15Dp

(1 − q)2 [1 + q (3 + q(6 + 5q))]
1 + q + q2

(12)

A comparison of Eqs. (9) and (12) shows the advantage of shell
particles to fully porous ones as far as the intraparticle diffusion
is concerned. Fig. 1 illustrates the decrease of diffusion time in
core–shell particles relative to that in fully porous particles. When
the diameter of the solid core is less than 40% of the total diam-
eter, the relative decrease of the diffusion time is less than 20%.
Although the diffusion path is shorter, the geometry does not favor
diffusion, since the solid core presents a reflecting boundary. Any
further increase of the relative size of the solid core, however, will
strongly reduce the diffusion time.

For a Halo or a Poroshell 120 particle q = 1.7/2.7 = 0.63. From
that value we get that in a Halo particle, the mean diffusion time
of a molecule for a single visit should be 44% of the one in a
fully porous particle of the same diameter. For a Kinetex particle
q = 1.9/2.6 = 0.73, therefore in a Kinetex particle, the diffusion time
should only be 27% of the diffusion time in a same-diameter fully
porous particle.
The plate-height equation for core–shell particles was derived
by Gengliang and Zhide [16] and by Kaczmarski and Guiochon [2]
using the general rate model of chromatography. In that model, an
external mass-transfer coefficient expresses the fluid-to-particle
resistance, and the mass-transfer resistance that is due to the slow
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iffusion in the pores is described by an internal mass-transfer coef-
cient. The overall mass-transfer coefficient k is calculated from the
xternal (kext) and internal (kint) mass-transfer coefficients:

1
k

= 1
kext

+ 1
kint

(13)

Kaczmarski and Guiochon obtained the internal mass transfer
oefficient for core–shell particles in the following form (Eq. (30)
f Ref. [2]):

1
kint

= rp

5Dp

(1 − q) [1 + q(3 + q(6 + 5q))]

(1 + q + q2)2
(14)

A first-order rate constant may be calculated from the internal
ass-transfer coefficient:

′′ = 3kint

rp
(15)

here rp/3 is the volume-to-surface ratio of a spherical particle. A
omparison of Eq. (12) with Eqs. (14) and (15) gives

= 1
k′′ (1 − q3) (16)

Therefore we can conclude that the mean diffusion time –
btained from a random walk model – and the rate constant for
nternal mass transfer – obtained from the moments of the general
ate model – are equivalent since 1 − q3 is merely a scaling factor:
he volume fraction of the porous shell of a particle. That parameter
as to be taken into account in the phase ratio.

.2. Diffusion time in cylindrical and in porous-shell pillar
tationary phase

The structure of the stationary phase in a monolithic chromato-
raphic column is a solid composed of a thin, porous skeleton and
arge-diameter macropores. The generale rate model of monolithic
olumns was developed by Miyabe and Guiochon assuming that the
tructure of the monolith can be approximated by porous cylin-
ers that contain the mesopores and are located in the center of
ylindrical macropores [12].

We write Eq. (5) for cylindrical coordinates to obtain the mean
iffusion time of a molecule within a monolithic structure.

1
r

dt̂

dr
+ d2 t̂

dr2
+ 1

Dp
= 0 (17)

Using the above detailed strategy, we can calculate the diffusion
ime in a porous monolith with a radius of the cylindrical skeleton
eing r as

= r2

8Dp
(18)

This expression is identical to the reciprocal of the rate constant
or internal mass transfer in monolithic columns [12].

De Malsche et al. suggested the use of porous shell pillar struc-
ures as the cylindrical equivalent of the porous shell particles [17].
lthough that column technology seems to be dormant, the diffu-
ion time in a porous shell cylinder reduces as the size of the solid
ore increases.

When we solve Eq. (17) for the boundary conditions of a porous

hell cylindrical system, the following diffusion time is obtained:

= r2

8Dp

[
1 − 3q2 + 4q4ln q

q2 − 1

]
(19)

[
[

[
[
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This diffusion time is equivalent to the reciprocal of the rate
constant for internal mass transfer obtained for porous shell pillars
by De Malsche et al. [17].

4. Conclusions

We used a microscopic random walk model of diffusion [15] to
calculate the mean diffusion time in fully porous and shell-type
packing materials. The calculations show that the relative decrease
of the diffusion time is rather significant with the currently avail-
able core–shell packing materials. The diffusion times calculated
on the basis of the microscopic random walk model are equivalent
with the appropriate intraparticle mass-transfer kinetics terms.

As long as the diffusion time is considered, the 2.7-�m Halo and
Poroshell 120 phases are equivalent to a 1.8-�m fully porous pack-
ing material. The 2.6-�m Kinetex packing material is equivalent to
a 1.34-�m fully porous stationary phase.

Hindered diffusion – which is observed when the size of the
analyte macromolecules becomes comparable to the pore diame-
ter – affects both fully porous and core–shell packing materials in
the same manner. It will, however, cause a much more momen-
tous band broadening in fully porous particles where diffusion
path as well as diffusion time are longer than in core–shell
particles.

We should emphasize that here only the intraparticle diffu-
sion has been considered; the effects of retention, external mass
transfer, mobile phase dispersion, or extra-column instrumen-
tal broadening are not taken into account. Therefore the realistic
advantage of the core–shell particles may be smaller than the num-
bers presented here would indicate it.
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